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Abstract

The NOνA experiment is a long baseline neutrino oscillation experiment with the

objective to measure the oscillation probability of muon type neutrinos (νµ) into electron

type neutrinos (νe). NOνA measures the interactions of neutrinos from the NuMI beam

in two functionally identical liquid scintillator detectors. The far detector detects the

appearance of electron neutrinos, leading to measurement of the oscillation parameters

under study. Using an off axis beam with an 810 km baseline length, NOνA is sensitive

to measuring the neutrino mass hierarchy, the CP violating parameter, and the octant

of the mixing angle, θ23. The data presented in this thesis has been collected from

October 2013, until May 2018.

The first NOνA νe charged current identifier utilized an artificial neural network

with the physical features of the highest energy reconstructed shower as inputs. The

νe charged current identifier in this thesis utilizes a Long Short-Term Memory network

with the physical features of every reconstructed shower in a particular interaction.

In addition to the Long Short-Term Memory network, there are two Boosted Decision

Trees to assist in event level selection. In the analysis of the data, 54 νe candidate events

were detected with an expected background of 15 events. The results of this analysis

prefer the normal mass hierarchy with maximal mixing and δCP
π = 1.92+0.08

−1.19. Results

from this analysis differ from the published NOνA analysis, due to the differences of

electron identification techniques.
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Chapter 1

Neutrino Physics

1.1 History of Neutrinos

The story of neutrinos begins in 1930 when an experiment conducted by James

Chadwick found that the electrons emitted from the beta decay of 214Pb had a contin-

uous energy spectrum [1].

This was puzzling at the time because the kinematics of a two body decay with

a massive target demands a mono-energetic energy spectrum of the outgoing particle.

There were two explanations which came out of this observation. Niels Bohr proposed

that energy is conserved on a statistical basis [2]. Wolfgang Pauli proposed, however,

that in these decays, there was a light, neutral particle, which led to a three body phase

space, thus explaining the continuous electron energy spectrum [3].

In 1956, the neutrino was observed by a group of physicists by conducting a beta

capture experiment. In particular, the group first observed the electron flavor in the

capture of electron anti-electron neutrinos by the following process:

ν̄e + p→ e+ + n (1.1)

This measurement led to winning the Nobel Prize in physics in 1995 [4]

The other neutrino flavors were discovered by measuring the charged current in-

teractions of the neutrinos from the other charged lepton decays. As a result of this,

there are known to be three neutrino flavors which are identified by the charged lepton

1



involved in a charged current interaction with the given neutrino [5, 6]

1.2 The Standard Model

The Weinberg-Glashow-Salam Model, also known as the Standard Model is the

current description of elementary particles and their interactions. It is a SU(3) ⊗
SUL(2)⊗ U(1) theory. The model is consists of interactions between fundamental half

integer spin particles known as fermions and integer spin particles known as bosons.

The interactions in the Standard Model are mediated by Gauge Bosons. The sim-

plest interaction is electromagnetism. Electromagnetism is a U(1) gauge theory which

describes the interactions of matter with the U(1) gauge boson, known as the photon.

The photon is massless, and it has spin 1. With this U(1) gauge symmetry, electromag-

netic interactions must preserve electromagnetic charge. The next simplest interaction

is known as the Weak Interaction. The Weak Interaction is a SUL(2) Yang-Mills Theory

which describes the interactions of matter with the SUL(2) gauge bosons, known as the

W± and the Z bosons. The gauge bosons of the Weak Interaction are very massive,

so the interactions occur at small length scales. The most complex interaction of the

Standard Model is the Strong Interaction. The Strong Interaction is a SU(3) Yang-Mills

Theory which describes the interactions of quarks with the SU(3) gauge bosons, known

as gluons. Gluons are also massless and have spin 1. With this SU(3) gauge symmetry,

the strong charge, also known as color, must be conserved in strong interactions.

Matter in the Standard Model is comprised of two families of fermions: Quarks and

Leptons. Quarks are the building blocks of hadrons. They are held in close proximity,

as a result of the strength of the strong interaction at increasing distance. Since the

strong interaction increases as the separation between quarks increases, it impossible to

have free quarks. Since Quarks have color, electromagnetic charge, weak charge, and

mass, they participate in all known Standard Model interactions. Leptons, on the other

hand, contain no color. Therefore, the charged leptons participate in all interactions,

besides the strong interaction. Neutrinos are neutral leptons, so they only participate

in the weak interaction. There are three charged leptons, and there are three neutrinos

with the same flavors as the charged leptons. Under the weak interaction, the leptons

form weak doublets because the weak interaction is aSUL(2) gauge theory. The charged

2



Figure 1.1: Known elementary particles in the Standard Model
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lepton and the neutrino with the same flavor form a weak doublet with the charged

lepton having I3 = +1/2, and the neutrino having I3 = −1/2.(
νe
e

)
,

(
νµ
µ

)
,

(
ντ
τ

)
Figure 1.2: SUL(2) weak doublets for the three lepton generations.

1.3 Neutrino Fields

From experiments, neutrinos were found to be spin 1
2 particles. As a result of

this, neutrinos obey the Pauli Exclusion Principle, and thus must be described by anti-

symmetric objects. The fields describing neutrinos must also be Lorentz invariant. The

Lorentz Group is SO(1,3), which can be decomposed as:

SO(1, 3) ' SUL(2)⊕ SUR(2) (1.2)

As a result of this, there are two spin 1/2 irreducible representations of the Lorentz

Group known as the Spinor Representations. The two spinor representations form right

handed and left handed Weyl Spinors. A more compact way of using these spinors is to

introduce the Dirac Spinor. The Dirac Spinor is a 4 vector, which consists of two Weyl

Spinor components, as follows:

ψ =

(
ψL

ψR

)
ψ̄ =

(
ψ†R ψ†L

)
(1.3)

Due to its compact nature, the Dirac Representation is convenient to use. The La-

grangian density describing free fermions is the following:

L = ψ̄(iγµ∂µ −m)ψ (1.4)

It is very interesting to note that to maintain Lorentz Invariance, the mass term only

couples left handed chiral states to right handed chiral states, unlike the kinetic term

which couples the chiral states. By finding the Euler-Lagrange equations, one finds the

Dirac Equation:

4



(iγµ∂µ −m)ψ = 0 (1.5)

A special case of equation 1.5 is when the particle is massless. In this case, m = 0,

and we get the Weyl Lagrangian:

L = iψ̄γµ∂µψ (1.6)

One of the questions which remains in neutrino physics is whether or not they

are Majorana Fermions. Since a Majorana Fermion state is equivalent to its charge

conjugated state, it is impossible for the charged leptons to be Majorana Fermions.

Since neutrinos are electrically neutral, it is possible for them to be Majorana Fermions.

The Lagrangian for Majorana Fermions is as follows:

L = iψ̄γµ∂µψ −
i

2
(mLψ

†
Lσ2ψ

∗
L +mRψ

†
Rσ2ψ

∗
R + h.c.) (1.7)

Since charge conjugation has the following form for Weyl Spinors: ψc = −iσ2ψ
∗,

one can easily see from the Lagrangian that the mass terms couple the Weyl Spinors to

their charge conjugated partners, meaning that Majorana Fermions are their own charge

conjugates, which would lead to a violation in lepton number conservation for neutrinos.

Observation of such a violation would occur in neutrinoless double beta decay, which is

one of the great searches in the future of high energy physics experiments.

Combining the Dirac mass terms with the Majorana mass terms and using the

notation ψc = −iσ2ψ
∗ one gets the following in the Weyl basis:

Lm = −1

2

(
ψ†L ψ†cR

)(mL mD

mD mR

)(
ψcL

ψR

)
+ h.c. (1.8)

Since the above matrix is not diagonal, the chiral neutrino flavor states do not

have a definite mass. When this matrix is diagonalized, one obtains the neutrino mass

eigenvalues:

m± =
1

2

(
mL +mR ±

√
(mL −mR)2 − 4m2

D

)
(1.9)

It is important to note that right handed chiral states do not participate in the weak
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interaction, which will be explained later. Therefore, mL is necessarily 0 and mR need

not be 0. The reason for this is because the effect of the mL term is to create a right

handed anti-neutrino and destroy a left handed neutrino. This would mean that the

Higgs Field has a weak isospin of 1. The mR term creates a left handed anti-neutrino

and destroys a right handed neutrino. Since these fields have no weak isospin, the

Higgs Field has 0 weak isospin, If we assume that mR >> mD, we obtain the following

approximation:

m− ≈
m2
D

mR

m+ ≈ mR(1 +
m2
D

m2
R

) ≈ mR

(1.10)

It is worth noting that a very large mR yields a small m− and a large m+. This is

known as the See-Saw Mechanism, and this is a possible explanation for the tiny mass

of the neutrino.

1.4 Weak Interactions

It has been experimentally observed that weak interactions violate Parity Con-

servation. In 1950, Chien-Shiung Wu observed that only left handed chiral particles

participate in the weak interaction [7]. In order to have parity violation, weak currents

have a vector-axial form (V-A). The weak charged current has the form:

Jµ = ψ̄lγ
µ(1− γ5)ψν + h.c. (1.11)

and the neutral current has the form:

Jµ = ψ̄lγ
µ(gV − gAγ5)ψν + h.c. (1.12)

Here, ψl is the Dirac Spinor for the charged lepton, ψν is the Dirac Spinor for the

neutrino, and gv and gA are the couplings. Using properties of γ matrices, equation

1.11 may be rewritten as:

Jµ =
1

4
ψ̄lγ

µ(1− γ5)(1 + γ5)ψν + h.c. = ψ̄l,Lγ
µψν,L (1.13)
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From this, it is evident that the weak interaction only occurs between left handed

chiral fermions, where chiral state fermions are given by:

ψL = (1−γ5)
2 ψ, ψR = (1+γ5)

2 ψ

Here, ψL is the left handed chiral state, and ψR is the right handed chiral state. It

is important to note that anti-particles have the opposite chiral states:

ψ̄L = (1+γ5)
2 ψ, ψ̄R = (1−γ5)

2 ψ

This shows that the left handed charged leptons and their corresponding neutrino

form a weak isospin doublet, and that the right handed particles are weak isospin

singlets. Right handed charged leptons, however, can participate in neutral current

interactions because their electric charge gives them a weak hypercharge, given by:

YW = 2(Q− I3) (1.14)

Right handed charged leptons couple to the Z0 boson as −Qsin2θW , where θW is

the Weinberg Angle.

1.5 Neutrino Oscillations

Neutrinos were first thought to be massless particles. If this were the case, then

neutrinos would travel at the speed of light and have infinite time dilation. Therefore,

any oscillation in the neutrino frame of reference cannot be observed in any inertial

frame of reference. As a result of this, there exists a one-to-one correspondence be-

tween eigenstates of the free particle propagation Hamiltonina, mass eigenstates, and

eigenstates of the Weak interaction, flavor eigenstates.

The phenomenon of neutrino oscillations was first hypothesized by B. Pontecorvo.

He predicted that neutrinos oscillated between particle and antiparticle states [8]. Evi-

dence for neutrino oscillations first appeared when a deficit in the solar neutrino flux in

the Solar Neutrino Search Experiment at the Homestake Mine was discovered [9]. The

experiment expected that the total flux of neutrinos from the sun would be electron type

neutrinos. νe → νµ oscillations were suggested by Pontecorvo and Gribov to explain the

7



deficit in the solar νe flux [8]. This hypothesis, however, was later shown to be incorrect

when the MSW Effect in the sun was developed.

1.5.1 Oscillations in the Vacuum

The mathematical formalization of neutrino oscillations begins with the expansion

of a particular neutrino flavor state |να〉 in terms of the neutrino mass basis |νi〉:

|να〉 = |να〉 =
3∑
i=1

|νi〉 〈νi|να〉 =
3∑
i=1

Uiα |νi(t)〉 (1.15)

Here, Uif are components of a 3 × 3 unitary, mixing matrix. Using Euler Angles and

a complex phase, this matrix is conveniently parameterized as the Pontecorvo, Maki,

Nakagawa, Sakata (PMNS) Matrix.

U =


c12c13 s12c13 s13e

−iδCP

−s12c13 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13

s12s23 − c12c23s13e
iδCP −c12s23 − s12c23s13e

iδCP c23c13

 (1.16)

Here, sij = sin(θij), cij = cos(θij), and δ is the CP violating phase, which gives non-

identical oscillation probabilities for neutrinos and anti-neutrinos, if it is nonzero.

The dynamics of neutrino propagation through free space are realized by working

in the mass eigenbasis. The time evolution of the mass eigenstate |νi(t)〉 is governed by

the Schrodinger Equation:

H |νi(t)〉 = i∂t |νi(t)〉 = E |νi(t)〉 (1.17)

Where H is the Hamiltonian for free particle propagation. The solution of this equation

is the familiar plane wave solution:

|νi(t)〉 = |νi(0)〉 ei(pi·xi−Eit) (1.18)

It is then convenient to align the momentum with the direction of propagation and to

use the fact that the neutrinos are almost always ultra-relativistic: t ≈ L. Here, L is
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the length of propagation, and natural units are used: ~ = c = 1. This leads to:

|νi(t)〉 = |νi(0)〉 eiL(p−E) (1.19)

For a relativistic particle, E =
√
p2 +m2. Since neutrinos have mass energy much

smaller than the kinetic energy, it is acceptable to simplify E by means of a Taylor

Expansion:

E = p
(

1 +
m2

p2

)1/2
≈ p+

m2

2p
(1.20)

In the ultra-relativistic limit, p ≈ E. This result may be inserted into equation 1.19 to

yield:

|νi(t)〉 = |νi(0)〉 e
−im2L

2E (1.21)

Plugging this expression into equation 1.15 gives the following expression for the neu-

trino flavor state:

|να(L)〉 =

3∑
i=1

Uiα |νi(0)〉 e
−im2

i L

2Ei (1.22)

From elementary quantum mechanics, the probability for a flavor state to oscillate

to another flavor state is given by the projection squared of the new flavor state from

the original:

Pα→β(L) = | 〈νβ|να(L)〉 |2 (1.23)

Now the form of equation 1.22 may be used to yield:

=

∣∣∣∣∣
(

3∑
j=1

〈νj |U∗jβ

)(
3∑
i=1

Uiα |νi(0)〉 e
−im2

i L

2Ei

)∣∣∣∣∣
2

(1.24)

This expression simplifies by orthonormality, yielding:
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=
∣∣∣ 3∑
i=1

U∗iβUiαe
−im

2
i L

2Ei

∣∣∣2
=

3∑
i=1

3∑
j=1

UiβU
∗
iαU

∗
jβUjαe

i
∆m2

ijL

2E

(1.25)

Where ∆m2
ij = m2

i −m2
j . This expression may be rewritten as:

Pα→β(L) = δαβ − 4
∑
i>j

Re(UiβU
∗
iαU

∗
jβUjα) sin2

(∆m2
ijL

4E

)
+2
∑
i>j

Im(UiβU
∗
iαU

∗
jβUjα) sin

(∆m2
ijL

2E

) (1.26)

It is important to note that this probability is dependent on the mass squared differences

between the mass states, the energy of the neutrino, and the length of the neutrino

propagation. There are two mass squared differences, which have different orders of

magnitude. As a result of this, studying the larger mass squared difference, which is

done in NOνA, will cause small corrections to the probability from the smaller mass

squared difference term. In order to obtain the maximum oscillation probability, the

argument of the first sin in equation 1.30 must be set to π. This yields the oscillation

length: Losc = 4πE
∆m2

ij
.

In the νe appearance analysis, the probability for a muon type neutrino to oscillate

into an electron type neutrino is the measurement of interest. This is given by:

Pνµ→νe = Patm + Psol + Pint (1.27)

Patm is the leading order term, which is governed by the oscillation length involved in

atmospheric neutrino experiments:

Patm = sin2θ23sin
22θ13sin

2∆31 (1.28)

Where ∆ij = 1.27
∆m2

ij(eV
2)L(m)

E(GeV ) . The numerical factor arises from converting natural

units into units used in the experiment. Psol is the subdominant term, which is governed

by the solar length:
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Psol = cos2θ13cos
2θ23sin

22θ12sin
2∆21 (1.29)

This term is small because it has been observed that ∆21 is a small value. Pint is the

interference term between the atmospheric and solar length probabilities, given by:

Pint = cosθ13sinθ13sinθ23[cosδcos∆32sin∆31sin∆21 ± sinδsin∆32sin∆31sin∆21]

(1.30)

The positive sign is for neutrinos, and the negative sign is for anti-neutrinos.

1.5.2 Oscillations in Matter

In the previous section, the calculation of neutrino flavor oscillation assumed the

neutrinos propagate in the vacuum. However, in many oscillation experiments the

neutrinos travel through the earth’s crust. When neutrinos propagate through matter,

there is a nonzero probability of interaction between the neutrinos and the matter

through which they propagate.

Neutrinos may interact with the electrons in the earth. As mentioned earlier, the

neutrinos may interact by an exchange of a W± boson in a charged current interaction

or by an exchange of a Z boson in a neutral current interaction. These interactions are

represented by the Feynman diagrams in figure 1.3

It is important to note that since electrons are the only leptons in the surrounding

material, only electron neutrinos may undergo coherent charged current interactions.

Neutral current cross-sections, on the other hand, are equivalent for all neutrino flavors.

Matter gives an effective mass to the neutrinos, which changes the oscillation prob-

abilities [9]. In NOνA, a highly pure beam, initially composed of muon type neutrinos

propagate through the earth. During propagation, non-zero amplitudes develop for νe

and ντ . Since electron type neutrinos differ from the other flavors, as a result of the

nonzero cross-section for coherent charged current scattering, they experience an effec-

tive potential, VCC =
√

2GFne. GF is the Weak Fermi Coupling Constant, and ne is the

electron number density in the medium. This effect modifies the oscillation parameters

as follows:
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Figure 1.3: Feynman diagrams for coherent neutrino scattering. In the neutral current
case, all neutrino flavors can participate. Whereas, in the charged current case, only
electron type (anti)neutrinos can participate.

∆m∗32 =
√

∆m2
32 sin2 2θ13 + (2EVCC ∓∆m32 cos 2θ13)2

sin2 2θ∗13 =
∆m2

32 sin2 2θ13

(∆m∗32)2

(1.31)

In the above equation, the negative term is for neutrinos, and the positive term is

for anti-neutrinos . The phenomenon of the matter effect creating effective oscillation

parameters is known as the Mikheyev-Smirnov-Wolfenstein (MSW) Effect [10]. At base-

lines on the order of 1000 km and energy on the order of 1 GeV, a νe resonance occurs,

which greatly enhances or suppresses the probability for νµ → νe. This is given by:

Pmatterµ→e ≈
(

1± 2EVCC
∆m2

32

)
P vacuumµ→e (1.32)

In the NOνA experiment, the experimental topic of this paper, this corresponds to

approximately a 30% enhancement or suppression in νµ → νe transition probability,

depending on the sign of ∆m2
32.

One must understand that this asymmetry between νe and ν̄e is not due to CP

violation. This asymmetry may either enhance or decrease the effect of CP violation in

the appearance probability. Therefore, the matter effect may resemble CP violation in

the data. However, by measuring both neutrinos and anti-neutrinos, it may be possible

to disentangle CP violation from the matter effect. NOνA, in conjunction with other
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experiments, seeks to measure or limit CP violation and resolve the sign of ∆m2
32.

NOνA is the longest baseline experiment, which means that it is the most sensitive to

measuring ∆m2
32, as seen from equation 1.32.

1.6 Neutrino Mass Hierarchy

An important parameter being measured in the NOνA Experiment is the hierarchy

of the neutrino masses. From previous experiments which measured neutrinos from the

atmosphere, it was discovered that the absolute value of the mass squared difference

between m1 and m3, ∆m2
31, is equal to 2.44 × 10−3eV 2 [11]. From experiments which

measured neutrinos from the sun, it was discovered that the mass squared difference

between m1 and m2, ∆m2
21, is equal to 7.53 × 10−5eV 2 [12]. Different oscillation ex-

periments are sensitive to different magnitudes of mass squared difference for a given

energy and baseline length. This is summarized in table 1.1.

Source Eν in MeV L in km ∆m2 in eV 2

Solar ∼ 1 1.5 × 108 ∼ 1011

Atmospheric ∼ 103 ∼ 104 ∼ 10−4

Reactor ∼ 1 ∼ 1 ∼ 10−3

Reactor ∼ 1 ∼ 1 ∼ 10−5

Accelerator ∼ 103 ∼ 1 ∼ 1

Accelerator ∼ 103 ∼ 103 ∼ 10−3

Table 1.1: Mass Hierarchy Sensitivities

It is important to note that ∆m2
21 << ∆m2

31. As a result of this, ∆m2
32 ≈ ∆m2

31.

This information, however, is not sufficient to describe the hierarchy of the neutrino

masses. The sign of ∆m2
32 is still not known. As shown in figure 1.4, m3 > m2,m1 or

m3 < m2,m1. NOνA seeks to measure the sign of the mass squared difference between

m3 and m2.
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Figure 1.4: The left corresponds to the normal hierarchy, while the right corresponds
to the inverted hierarchy. The flavor composition of the mass states are given by the
colors.

1.7 CP Violation in Neutrino Oscillations

One of the most important physics targets in the NOνA experiment is the magni-

tude of CP violation in neutrino oscillations. This parameter can be accessed by mea-

suring neutrino oscillations and anti-neutrino oscillations, under the same conditions.

Measurement of this parameter will quantify the difference in oscillation probability

for neutrinos and anti-neutrinos. If nature permits it, a measurement of δCP can be

measured with modest statistical significance.

This parameter comes to be as a result of the complex nature of the PMNS

Matrix. For CP symmetry to be broken, T symmetry must also be broken to maintain

CPT symmetry, which is a conserved symmetry of nature. As a result of the parame-

terization of the PMNS Matrix, the CP violating phase, δCP , is the parameter which

quantifies the magnitude of CP breaking in neutrino oscillations.

14



Chapter 2

Neutrino Oscillation Experiments

The goal of all neutrino oscillation experiments is to either measure the probability

of appearance or disappearance of a neutrino flavor from an initial flavor. Currently,

there are four types of neutrino oscillation experiments: solar, reactor, atmospheric,

and accelerator. Each of these experiments have certain conditions, which make them

suitable for measuring certain parameters of neutrino oscillation. This is due to the

ratio of the energy of the produced neutrinos and the length of propagation.

2.1 Solar Neutrino Experiments

The first type of neutrino experiment conducted was a solar neutrino experiment.

In the late 1960’s, Raymond Davis conducted a search for neutrinos from thermonuclear

reactions in the sun. The experiment consisted of a 380 m3 detector located 1478 meters

underground in the Homestake Gold Mine in South Dakota. The detector was filled with

Perchloroethylene, a common chemical used in dry cleaning. Perchloroethylene was used

for its rich Chlorine content. Neutrinos with energies from fusion processes in the sun

undergo capture in Chlorine by the capture process:

νe +37 Cl→37 Ar + e− (2.1)
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The threshold energy of the neutrino in this process is 0.814 MeV. By ”bubbling” the

detector with Helium, Davis was able to collect the Argon which resulted from the cap-

ture process and count the Argon nuclear decays [9] There are several processes in solar

fusion reactions which produce neutrinos. The detector in the Homestake Experiment

was sensitive to neutrino energies at the MeV scale. Theorist John Bahcall calculated

the expected neutrino energy spectrum, which was encapsulated in the Standard Solar

Model (SSM). SSM predicts that 91% of the neutrinos produced in the sun come from

the proton proton fusion process:

p+ p→ d+ e+ + νe (2.2)

The maximum energy of the neutrino from this process has a maximum energy of 0.4

MeV, making it short of the threshold energy of the νe capture process in Chlorine.

Therefore, neutrinos from higher processes in the fusion chain reaction were needed.

The following chain reaction produced neutrinos with energies above threshold for the

experiment:

d+ p→3 He+ γ

3He+3 He→4 He+ 2p

3He+4 He→7 Be+ γ

7Be+ p→8 B + γ

8B →8 Be+ e+ + νe

(2.3)

The neutrinos from the 8B decay have a maximum energy of 14 MeV, and they represent

1% of the total flux of neutrinos from the sun [11]. The experiment measured roughly

one third of the neutrinos that were predicted in SSM. Further solar neutrino oscillation

experiments measured this deficit as well. It was for this reason that Bruno Pontecorvo

hypothesized that there was a flavor oscillation occurring in the solar neutrinos.

Neutrinos which are produced in the center of the sun traverse an exponentially

decaying density of electrons to reach the surface. At the neutrino energies of interest

for solar experiments, the electron density close to the center of the sun is near the

resonant density, as previously discussed. The combination of these phenomena lead to

an adiabatic evolution of the νe flavor state into the ν2 mass state. Using the two flavor

16



Figure 2.1: Spectra of the neutrinos from the reactions in the fusion chain. Neutrinos
from the 8B decay were observed in the Homestake Mine Experiment
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oscillation model, we have:

|ν1〉 = cos θ |νe〉+ sin θ |νµ〉

|ν2〉 = − sin θ |νe〉+ cos θ |νµ〉
(2.4)

Therefore, the probability of electron flavor survival is given by:

Pνe→νe = | 〈νe|ν2〉 |2 = sin2 θ (2.5)

Neutrinos of lower energies do not undergo the adiabatic evolution into a pure mass

state. Instead, to good approximation, they are produced in the νe flavor state and

oscillate during propagation to earth. Once again, using the two flavor model, the

probability for electron flavor survival is given by:

Pνe→νe ≈ 1− sin2 2θ sin2(
∆m2

21L

4E
) (2.6)

By combining the results from experiments which used neutrinos from Boron decays,

such as the Homestake Experiment with experiments which used lower energy neutrinos

from the proton-proton fusion process, such as Super-K, the oscillation parameters θ12

and ∆m2 were determined to be [12]

sin2(2θ12) = 0.846± 0.021

∆m2
21 = (7.53± 0.18) × 105 eV 2

In 2001, the Sudbury Neutrino Observatory (SNO) Experiment, carried out by Arthur

McDonald performed a flavor blind measurement of solar neutrinos and verified the

solar model predictions [13].

2.2 Atmospheric Neutrino Experiments

Another large source of neutrinos which reach the surface of the earth are neutrinos

which result from the collisions of cosmic ray protons with the nuclei in the atmosphere.

The collisions produce a large number of pions. Neutrinos are produced from the charged

pions by their decays into muons and muon type neutrinos. Muons which decay in the
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atmosphere also decay into electrons, muon type neutrinos, and electron type neutrinos,

as seen in figure 2.2.

Figure 2.2: Mesons resulting from cosmic ray proton collisions undergo leptonic decays.
Without oscillations, there should be twice as many muon type neutrinos as electron
type neutrinos.

As seen in figure 2.2, one should expect to observe twice as many muon type neutrinos

as electron type neutrinos. The Super Kamiokande Experiment, however, found that

there was a far lower νµ CC interaction rate from neutrinos which passed through the

earth versus neutrinos which entered the detector from above. The reason for this is

because the matter effect from the earth enhanced the probability of oscillation from

νµ to ντ . With neutrino energies ranging from the GeV to the TeV scale and baseline

lengths used in atmospheric experiments, atmospheric neutrino oscillation experiments

are sensitive to measuring |∆m2
32| and θ23.
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2.3 Reactor Neutrino Experiments

Another type of experiment which studies neutrino oscillations is a reactor experi-

ment. Reactor experiments use ν̄e’s from the Beta Decays of nuclei in fission reactors.

These neutrinos are produced at the MeV scale. As a result of this, the detectors of

these experiments are usually placed in close proximity to the nuclear reactors. This

minimizes the matter effect and allows for greater sensitivity to measure the oscillation

parameter, θ13 and |∆m2
32|. This increased sensitivity to these parameters is the re-

sult of the L
E minimizing terms in the oscillation probability with the parameter ∆m2

21.

Therefore the two flavor model can be used to good approximation, yielding the survival

probability:

Pν̄e→ν̄e ≈ 1− sin2 2θ13 sin2
(∆m2

32L

4E

)
(2.7)

Reactor experiments determine the survival probability of ν̄e by measuring the rate

of the absorption process: ν̄e + p → e+ + n. Experiments such as Daya Bay, RENO,

and Double CHOOZ, used Gadolinium doped liquid scintillator, which produces a flash

of light from the annihilation of the positron with an electron in the scintillator. The

neutron then thermalizes and is absorbed by the Gadolinium nucleus, which causes a

delayed signal.

Daya Bay was the first experiment to measure that θ13 6= 0, and this measurement

was made with 5.2σ significance [14]. The RENO and Double Chooz Experiments

confirmed the results of Daya Bay. Using a joint fit from the reactor experiments, the

following result was obtained: sin2(2θ13) = 0.093± 0.008 [12].

2.4 Accelerator Experiments

The final class of neutrino oscillation experiments is the accelerator experiment.

Accelerator experiments have the best control of L
E , which allows them to measure

certain oscillation parameters with high sensitivity. Accelerator experiments function

by smashing protons into a fixed target. These collisions produce a shower of hadrons

and mesons. Charged pions and kaons can be focused by their charge, which controls

the polarity of the neutrino beam. These neutrinos are aimed at a massive detector in
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order to measure the charged current interactions of the neutrinos.

An example of an accelerator experiment is the MINOS Experiment. MINOS used

the NuMI beam from Fermilab and measured neutrino interactions in the Soudan Mine

in northern Minnesota. With a baseline length of 734 km, and beam energies at the

GeV scale, MINOS was optimized to measure θ23 and |∆m2
32|. MINOS obtained the

following results: |∆m2
32| = 2.32+0.12

0.08 × 10−3eV 2 and sin2(2θ23) > 0.90 (90% confidence

limit) [15].

NOνA, the experiment discussed in this thesis, is also an accelerator experiment,

and it will be discussed in detail in the following chapter.
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Chapter 3

The NOνA Experiment

The NuMI Off-Axis νe Appearance (NOνA) Experiment is a long baseline acceler-

ator experiment which is designed to measure the appearance probability of electron

neutrinos from a muon neutrino beam. NOνA will have greater sensitivity than previ-

ous long baseline experiments, as a result of its large beam power and baseline length.

The NOνA Experiment consists of the Neutrinos at the Main Injector (NuMI) Beam

and two functionally identical detectors. There is a near detector placed in the vicinity

of the neutrino source, and there is a far detector placed 810 km, 14 mrad off-axis,

from the neutrino source in Ash River, Minnesota. The long baseline length allows

for maximal matter effect for neutrinos at energies optimal for oscillation. The off-axis

beam creates a more narrow beam energy spectrum, which yields a larger fraction of

oscillated neutrinos and smaller background.

3.1 The NuMI Beam

The NuMI Beam is created by colliding 120 GeV protons at a power of nearly 700

kW from the Main Injector ring at Fermilab with a fixed graphite target. The result of

the collision is a combination of pions and kaons.

These particles then travel toward magnetic horns, which are tuned in such a way

to focus the particles of a certain charge and to defocus particles of the opposite charge.

Horns which are tuned to focus positively charged particles are called to be in the

forward horn current (FHC) mode. This mode produces a beam of νµ, due to the

22



decay: π+ → µ+ + νµ with a 99.98% branching fraction, and K+ → µ+ + νµ with a

63.55% branching fraction. The reverse horn current (RHC) is the opposite mode, and

the beam will be mostly composed of ν̄µ. Near the beam energy peak, the contamination

from anti-particle neutrinos is small. For the forward horn current, there is less than

2% ν̄µ contamination, and for the reverse horn current, there is approximately 10%

νµ contamination. These values were obtained from simulation. Understanding beam

contamination from the data is currently undergoing exploration. Since µ+ and µ−

look identical while traversing the detector, one must look at activity at the end of the

muon’s track. Negatively charged muons have the ability to be captuered in an atomic

orbit and decay into electrons, whereas the positively charged muons collide with the

target nuclei and produce hadronic showers. The outgoing electrons and neutrons from

nuclear collisions on average occur much later in time than the neutrino interaction,

which means these are the most probable source of out of time energy deposition and

the end of the track and can thus be used to better understand the flavor composition

of the NuMI beam.

The hadrons and muons which do not decay are then absorbed by steel and earth

at the end of the decay pipe. This leaves a beam of mostly muon type neutrinos.

There exists, however, some electron neutrino background due to the following processes:

K+ → π0 + e+ + νe with a branching fraction of 5.07% and µ+ → e+ + νe + νµ with

a branching fraction of nearly 100%. The same holds true for the charge conjugated

processes. These beam νe’s are removed by considering a signal region of 1-3 GeV for

νe events. This is the result of the neutrino energy being peaked at 2 GeV. Around this

energy, there is a larger probability for νµ → νe oscillation. The majority of the beam

νe’s will fall outside of this energy window due to the larger phase space of the kaon

decays and the smaller phase space of the muon decays.

In order to control the beam energy and flux of the NuMI Beam, the relative distance

between the target and the first horn and the distance between the two horns can be

adjusted [16].

The energy spectrum and flux of the neutrinos can be calculated, using relativistic

kinematics. The hadrons produced are spinless, which means that the their rest frame

decays are isotropic in order to conserve angular momentum. In the lab frame, however,

the effect of boosting leads to the energy and flux to be a function of the angle of the
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Figure 3.1: Schematic showing the components of the NuMI Beamline.

beam center to the target. Using the data from the mesonic decays and the knowledge

gained from target hall simulations, the NuMI spectra can be understood.

Figure 3.2: Left: Neutrino energy flux vs. neutrino energy for various off-axis angles.
Right: Neutrino energy vs. meson energy for various off-axis angles.

The NOνA experiment utilizes the NuMI beam 14 mrad off-axis from the center-

line. This configuration was chosen to produce a narrow neutrino energy peak around

2 GeV, as seen in Figure 3.3. A narrow energy beam with this peak location is optimal

for measuring νe appearance with much lower background.
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Figure 3.3: NOνA uses a 14 mrad off-axis beam, resulting in a narrow peak around 2
GeV which is shown in red.
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3.1.1 The Fermilab Accelerator Complex

The process for producing the 120 GeV proton beam at Fermilab begins with protons

from a linear accelerator being fed into a booster ring which accelerates the protons to

an energy of 8 GeV. These protons were originally fed into the Main Injector Ring which

accelerated them to an energy of 120 GeV. This was the process which was used by the

MINOS Experiment, and it resulted in a beam power of roughly 350 kW.

Figure 3.4: The accelerator complex at Fermilab which is used to produce the NuMI
Beam.

In order to reach the beam power requirements of NOνA, several improvements were

needed. First, the cycle time for the Main Injector was reduced from 2.2 to 1.3 seconds.

The next improvement was to use the anti-proton storage ring from the Tevatron as

a recycler ring for the protons from the booster. With the recycler ring, the protons
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may be fed into the Main Injector by a process called slip-stacking. Slip-stacking is the

process by which protons from the recycler ring are fed into the main injector with a

particular timing and momentum configuration.

3.2 The NOνA Detectors

Cross-sections for neutrino interactions are very small. It is for this reason that

a highly intense NuMI beam is used. In addition to an intense beam, it is necessary

that the detectors of neutrino experiments be sufficiently massive. In the NOνA exper-

iment, there are two detectors: the near and far detector. Each of these detectors uses

orthogonally rotated, stacked planes, but they have different purposes.

The near detector is roughly a 300 ton detector, which is placed in a cavern 1

km away from the NuMI source. At its location, the near detector receives roughly 1

million times larger flux than the far detector. For this reason, the mass of the near

detector need not be so large. The purpose of the near detector is to measure the energy

distribution, which is the product of the flux and the interaction cross-section, before

the neutrinos oscillate. This allows for a prediction of the beam composition at the far

detector, thus decreasing reliance on simulation. The near detector must also have a

long and narrow design to allow enough length for charged particles to be contained in

the detector. The near detector has an iron muon ranger at the end to better contain

muons, which are in the minimum ionizing region around the 1 GeV scale.

The far detector is a 14 kton detector placed 810 km from Fermilab at Ash River,

Minnesota. This distance was chosen to maximize the probability for νµ → νe appear-

ance for the off-axis NuMI beam energy while remaining in the United States. The far

detector will be used to observe the νe appearance signal. Since the far detector is so

massive, it would have been a costly ordeal to place it underground. Strategic timing

cuts for the NuMI beam must be implemented, and topological cuts in the data must be

applied to reject most of the cosmic background. By using a 10 µs NuMI spill window

and applying the topological cuts, cosmic background poses a minimal hindrance to the

νe appearance analysis.
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3.2.1 The Detector Cell

A NOνA detector cell consists of a hollow, 4 cm x 6 cm, rectangular cross-section

tube made out of PVC. The ND cells are roughly 4 m. long, and the FD cells are roughly

15 m. long. These dimensions were chosen to allow for efficient assembly, transportation,

and installation, given the detectors’ fiducial mass requirements. Each tube consists of a

wavelength shifting fiber (WLS), immersed in liquid scintillator. Nearly all of the liquid

scintillator is composed of mineral oil, but 4.1% of it consists of pseudocumene [1,2,4-

Trimethybenzene] as the scintillant. Pseudocumene produces photons in the ultra-violet

spectrum when charged particles excite it. PPO [2,5-diphenyloxazole] and bis-MSB

[1,4-di(methylstyryl)benzene] are used to shift the ultra-violet light to the visible light

spectrum in the blue-light region. This is the optimal absorption region for the WLS

fiber. The photons are absorbed by the WLS fiber, where many of them undergo total

internal reflection and are shifted to green light. This is the region where the light is

most efficiently absorbed by Avalanche Photo Diode (APD), which is located at the

end of the cell. The quantum efficiency of the APD in this region is roughly 85%. This

signal is then amplified and sent into a system of electronics, which can then extract

timing and energy deposition information from the light.

3.2.2 Tracking

In order to obtain a useful spatial reconstruction of charged particles’ trajectories,

the detector cells needed to be strategically arranged. First, 32 cells were aligned side

by side to form a plane. The planes were then stacked orthogonally and aligned with the

direction of the beam. With this configuration, it is possible to describe the cartesian

coordinates of a particle’s trajectory. Planes which face vertically give the x coordinate,

and planes which face horizontally give the y coordinate. The planes were chosen to

face the beam direction to allow the beam direction provide the z coordinate. This can

all be seen in Figure 3.5

3.2.3 Electronics and Triggering

As stated earlier, detector cells produce light as charged particles traverse them. In

order to gain any useful information from this, there must exist a method to convert
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Figure 3.5: (a) A single cell of the detector. (b) The near and far detectors with a
zoomed image of the alternating plane design.
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such signals into an electronic form and effectively handle the large volume of those

electronic signals.

NOνA accomplishes the first task by sending all of the wavelength shifting fibers from

a particular plane into an avalanche photo-diode (APD). Due to their high quantum

efficiency for the amplification of the shifted light, APD’s provide a cost efficient way to

convert and amplify the light signal into a useful electric signal. APD’s are more heavily

affected by shot and dark electrical noise than other amplifying technologies such as a

photomultiplier tubes. This shortcoming is overcome by applying a voltage gain of 100

or 150 to the APD’s and having them operate at -15 oC [17].

After a particular APD converts the light signal into an amplified electronic signal,

the resulting electronic signal is fed into a four component system called the front

end board (FEB). Each FEB consists of an an application-specific integrated circuit

(ASIC), an analog to digital converter (ADC), a multiplexer, and a field programmable

gate array (FPGA). The ASIC is a CR-RC circuit which increases the signal to noise

ratio by amplifying and widening the electronic pulses. The ASIC is CR-RC circuit

which amplifies and widens the signals in time to better distinguish physics signals from

noise. The ADC converts the analog signal by digitizing it with respect to a 64 MHz

digital clock. The digital signals from each pixel in the APD are then multiplexed

by an eight-fold multiplexer for the far detector and a two-fold multiplexer in the near

detector. The output of the multiplexer is fed into the FPGA which uses dual correlated

sampling (DCS) to alert the data acquisition system (DAQ) that it has just sampled a

physics hit. The procedure for determining the validity of a hit consists of comparing

the ADC quanitities of hits temporally separated by three clock ticks. If the ADC

discrepancy exceeds a predetermined threshold, then the pulse is determined to be a

hit, and it is sent to the DAQ.

The DAQ receives hits from many sources including electronic noise, cosmic rays,

neutrinos, and potentially supernova neutrinos. In order to determine the source of a

particular hit, a triggering system needs to be applied. The NuMI beam spill has a

duration of 10 µs and is repeated every 500 µs. Therefore, hits which occur in the

beam spill window will be collected by the NuMI beam spill trigger. Cosmic rays,

however, continuously traverse the detector. Therefore, in order to have a pure cosmic

hit collection, a 10 Hz minimum bias trigger also is applied. The data collected by the
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DAQ system is finally stored on hard disks at both near and far detector sites. From

there, the data can be permanently stored on tape at Fermilab.
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Chapter 4

Simulations

Every high energy physics experience is unique, whether it be by calorimetry, track-

ing, detection strategy, instrumentation, and external environment. Therefore, there

are no theories or prior data which can adequately model the phenomena of an experi-

ment. It is for this reason, monte-carlo (MC) simulation is used. By using experiment

specific parameters and results from phenomenological theories and previous experi-

mentation, one can develop highly accurate predictions with monte-carlo simulations.

NOνA simulates neutrino beam flux, neutrino interactions, particle propagation, and

detector response. In this chapter, the phenomena and methods for simulating such

phenomena will be discussed.

4.1 Simulating the NuMI Beam

The first step in the simulation chain is modeling the content and flux of the neutrino

beam from the decays of the products of the proton on target collisions. It is important

to be able to model the neutrino flux for both the near and far detectors, so that the

systematic uncertainties from the beam flux can be minimized by performing a near/far

detector extrapolation of the ratio of the simulated and actual neutrino bean fluxes.

The source of this systematic uncertainty is the proximity to the beam source for both

of the detectors. Since the near detector is much closer to the beam source, it occupies

a much larger solid angle than the far detector.
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NOνA carries out the simulation, using three pieces of software: GEANT4 to sim-

ulate the particles traversing the detector hall geometry, FLUKA [18] to model the

particle decays, and FLUGG [19] to interface between the previous two pieces of soft-

ware. With these pieces of software, it is possible to trace the back from the outgoing

neutrinos to the protons which collided with the target.

Figure 4.1: Lower energy neutrinos primarily come from pion decays, and high energy
neutrinos primarily come from kaon decays.

4.2 Simulating Neutrino Interactions

Given the nature of the NuMI beam and the detector specifications, simulation soft-

ware is needed to model the event rate of particular interactions and the kinematics of

such interactions. NOνA uses the software GENIE to accomplish this. Genie is a simu-

lation software which uses the composition of the detector and interaction cross section

models to predict the event rate of various interactions as a function of interaction en-

ergy. In order to make an event rate estimation, GENIE uses the output of the beam

simulation and convolves the neutrino beam flux with the interaction cross-sections.

There are many interaction modes to be considered, but the most common ones include

quasi-elastic scattering, resonant baryon production, deep inelastic scattering, coherent

nuclear scattering, and meson exchange current scattering. These interactions have a

strong energy dependence, and they tend to differ in their four momentum transfer, Q2.

The quasi-elastic (QE) model was developed by Llewellyn Smith, and its name
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correctly describes the kinematics of this type of interaction. QE interactions occur in

the low Q2 region of phase space, which leads to the neutrino interacting with the whole

nucleons, instead of their components. As a result of this, GENIE models the target of

the interaction with a dipole form factor and solely gives the axial vector mass of the

target as a free parameter [20]. Therefore, QE interactions are easier to classify due to

the lower hadronic energy fraction in the interaction.

The GENIE implementation of resonant baryon production (RES) uses the Rein-

Segal Model [21]. The Rein-Segal Model models the baryon resonances using the

Feynman-Kislinger-Ravndal Model (FKR), which treats the baryon wavefunctions as

excited states of three quarks bounded in a relativistic harmonic oscillator [22]. To

simplify computations, GENIE neglects the interference between resonances and treats

the outgoing leptons as massless. Just as with the QE case, GENIE leaves the axial

vector mass as the only free parameter.

Deep inelastic scattering (DIS) is the phenomenon in which a neutrino interacts with

just the quark inside of a nucleon, rather than the nucleon itself. DIS is modeled in two

regions of the neutrino energy spectrum. At the lower end of the energy spectrum, there

is a higher probability for smaller Q2 transfer, so there must be a form factor correction.

This is achieved by adding corrections from the Bodek and Yang model to the individual

quark interaction [23]. At the higher end of the NuMI energy spectrum, DIS becomes the

dominant interaction mode. In this region and interaction mode, the neutrinos transfer

high amounts of Q2 to the parton target. Therefore, it is in this region in which a

neutrino interaction with a valence or sea quark becomes a good approximation. Unlike

QE and RES, DIS has several free parameters which can be tuned to fit the spectra

from the data. The weights of the reweighted model are determined by calculating the

ratio of the modified cross-section to the original cross-section.

One of the more rare interactions to occur in NOνA is the coherent scattering of a

neutrino off of the nucleus as a whole (COH). In this interaction mode, the neutrino does

not exchange enough Q2 to excite the nucleus into a higher energy state. Instead, the

neutrino scattering causes the nucleus to recoil and thus collide with other nuclei. COH

interactions, however, are most prominent in the MeV range, and thus their impact to

the NOνA interaction simulation is negligible.

Up until now, all of the interactions described neglected nuclear interactions between
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the nucleons. These models treated the nuclei as a Fermi gas inside of the nuclear re-

gion. This was discovered to be a problem when the spectra of the simulation did not

match that of the data. The data indicated that QE-like events were underrepresented.

There was no method to tune the GENIE parameters to correct for this phenomenon

without increasing the data/simulation discrepancy for the higher Q2 interactions. As

a result of this, nucleon-nucleon interaction in the nucleus was considered. More partic-

ularly, a 2 proton, 2 hole 2p2h model shows promising results. Under this model, there

is a contribution to the neutrino/nuclear cross-sections by considering the meson ex-

change current between two of the nucleons (MEC). WIth MEC, there was an improved

correspondence between the data and simulation for neutrino interactions.

Figure 4.2: Neutrino interaction cross-sections for various interaction modes as a func-
tion of neutrino energy in the vicinity of NOνA’s beam energy.

4.3 Simulating Particle Propagation

Once the interaction has been sufficiently modeled, it becomes necessary to model

how the products of the interaction propagate through the detector. In order to do this,

NOνA uses software called GEANT4, which inputs the detector geometry and models

how particles interact and decay within the detector and its surroundings [16].

GEANT is highly tunable due to its vast physics lists. NOνA uses a particular

physics list which best describes the particle trajectories for NOνA’s particular detector

geometry and kinematics. GEANT simulates particle trajectories step by step. At
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each step, the software selects the next action based on the probability drawn from the

physics models. In order to avoid superfluous computational cost, an adaptive stepping

procedure is employed which determines the step sized based upon the variance of the

interactions in a given interaction length.

In each cell, the energy deposited into the scintillator and WLS is summed to form a

simulated cell hit. An important consideration in forming this type of hit is a scintillating

phenomenon known as Birk’s Suppression [24]. Birk’s Suppression occurs when a rapidly

moving charged particle saturates the scintillator in its vicinity, which typically occurs

toward the end of a particle’s trajectory. Without this suppression, the light output per

unit length, dL
dX to be directly proportional to the energy output per unit length, dE

dX .

Instead, the two quantities are related by:

dL

dX
= L0

dE
dX

1 + kB
dE
dX

(4.1)

Here, L0 is a constant unique to the scintillator type and kB is the Birks Suppression

factor. To better match the data from the cells, NOνA adds an additional quadratic

correction from the Chou Model [25]. The final model of the light response to a particle’s

energy deposition in a cell is given by:

dL

dX
= L0

dE
dX

1 + kB
dE
dX + kC

dE
dX

2 (4.2)

Using information from protons and muons in the ND data and MC, the suppression

parameters were found by doing a simple χ2 minimization technique.

4.4 Simulating Detector Response

The next step in the simulation chain is to take the quantities gathered from GEANT

and model the way in which the detector cells and electronics respond. There needs to

be a way to model the photon transport in the cell and the response of the electronic

readout.
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4.4.1 Simulating Photon Transport

Now that there is a sufficient model for light levels for the detector cells, there

needs to be a method for converting those values into discrete photons to be read by

the APD. Doing a direct measurement of the light collection and transport efficiency

is impossible, due to the fact that the cells are closed. NOνA handles this dilemma

by employing a simple ray-tracing algorithm which calculates the paths of wave fronts

through media with varying refraction and boundaries with varying reflection. In this

model, assumptions about the features of the scintillator, WLS, and cell boundaries

need to be made. One of the features being exploited is the absorption and attenuation

length of the photons in the WLS. This was found by using the attenuation curves

from the cosmic ray muon studies which gave the best data/MC agreement. With the

ray tracing model, an estimate of the photon collection rate as a function of energy

deposition can be found along the surface of the fiber. From there, the propagation of

the photons is simulated using GEANT4.

Since the fiber is in a loop, the photons which are collected are halved and sent in

both directions of the fiber. The fiber attenuates the photons which travel through it.

Therefore, the attenuation curve from the cosmic ray muon studies is used to estimate

the mean number of photons as a function of position in the fiber. The number of

photons to reach the APD is Poisson distributed, so a Poisson smearing factor is applied

to the number prediction. Finally, the APDs have a quantum efficiency of 85%, causing

a 15% reduction in the collected photons.

4.4.2 Simulating the Detector Response

Now that a prediction for the number of photo-electrons (PE) arriving at the APD

have been made, the next task is to simulate the process by which the APDs convert the

PE into cell hits. This is done by converting the analog signal into a digital signal and

sending the signal to a dual correlated sampling node, which simulates the triggering

method used for the data. Digitizing the analog signal is done by using an analog to

digital conversion (ADC) with a temporal resolution of 62.5 ns. The magnitude of ADC

values at each time step is scaled by the ratio of PE to the PE which saturates the

APD. The ADC pulse is then shaped by a CR-RC circuit, as seen in figure 4.3.
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Figure 4.3: Circuit design of CR-RC circuit

The response of the ADC voltage is given by:

f(t) = f(0)
τ1

τ1 − τ2
(e
− t−t0

τ1 − e−
t−t0
τ2 ) (4.3)

Here, τ1 is the time constant of the differentiator component of the circuit, τ2 is the

time constant of the integrator component of the circuit, and t−t0 is the time difference

between the PE response and input ADC pulse. Gaussian-Markov distributed noise is

applied to the pulse to simulate the noise of the CR-RC circuit.

In the APD’s, there is an effect in which charge deposited in one of the pixels reduces

the charge of the other pixels by a factor of 1.86%. This effect is known as APD Sag.

This is simulated by summing the ADC for each pixel, scaling the sum by 1.86%, and

subtracting that amount for each pixel. Before this is done, each pixel’s ADC is scaled

up by 1.86% to handle the pixel’s self sag. Since there is a non-linear relationship

between a pixel’s ADC count and the calorimatric energy of a cell, the effect of the

sag is enhanced when considering calorimetric energy. Depending on the topology of

a particular interaction, the APD sag’s effect on calorimetric energy is in the range of

4-8%.

Finally after pulse shaping, the digitized ADC signal is sent to the DCS node, which

considers the difference in pulse height for ADC counts separated by three time steps.

If the difference in pulse height exceeds a predetermined threshold, the DCS algorithm

triggers a cell hit. This fixed threshold is determined differently for data and MC.
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Chapter 5

Reconstruction

In order to extract the physics out of an event in one of the detectors, the cell

hits must be treated to exploit the features of the physics under investigation. This is

known as reconstruction. The goal of reconstruction in the νe appearance analysis is to

accentuate the features of νe charged current interactions while reducing the features

from background, such as νµ charged current interactions, neutral current interactions,

and cosmic rays. The particles from these interactions have different ionization signa-

tures. Electrons, the target in the νe appearance analysis, begin as a thin column and

widen throughout propagation. Muons, however, typically have a thin column profile

throughout the entirety of propagation. This can be seen in Figure 5.1.

The reconstruction chain begins by calibrating the cell hits to convert light level

readings in to energy measurements. After calibration, cell hits are clustered by space

and time to find the hits which were involved in the neutrino interaction. Next, a Hough

Transformation is applied to identify a line of hits which could belong to a particle

trajectory. Following the Hough Transformation, the Elastic Arms vertex algorithm

is applied to identify where the neutrino interaction occurred. Then, the Fuzzy-K

Means clustering algorithm is applied to create three dimensional prong objects. Finally,

the Reclustering Algorithm is applied to more appropriately encapsulate the showering

nature of the electron in the NOνA detectors.
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Figure 5.1: Signatures of various neutrino interactions. The shapes of the different
outgoing particles have different features which can be exploited for a particular analysis.
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5.1 Cell Hit Calibration

In order to be able to measure the energy of a neutrino interaction in the NOνA

detectors, one must find a way to convert ADC signal into energy. To do this, NOνA

uses muons from data, due to their abundant supply from cosmic rays in the far detector

and neutrino interactions in the surrounding rock in the near detector.

The muons used for calibration must pass several quality cuts, and they must be suf-

ficiently reconstructed using simple tracking algorithms. Due to the muon’s predictable
dE
dx behavior, the muon’s dE

dx is used and the channel response is calibrated for each

channel in the detectors. Tri-cells in a reconstructed track are used for calibration for

two reasons: their use greatly reduces poor results from poor reconstruction, and it is

known that the particle passed through both the top and the bottom of the cell, instead

of traversing a corner of the cell. With this knowledge, one can obtain the equation for

the path length of a particle traversing said tri-cell.

Another important quantity needed to properly calibrate the detectors is the mean

position along the cell, also known as W. Using the track reconstruction and the neigh-

boring planes, one may obtain an estimate for W. For convenience, the range of W is

between -775 and 775 cm. Smaller values of W indicate that the particle’s mean position

is farther away from the readout, and the opposite holds true for larger values of W.

5.1.1 Cosmic Muon Bias Correction

Cosmic ray muons which enter the far detector do not have a uniform dE
dx along

their reconstructed tracks. Two phenomena cause such a bias in the visible energy

which depends on the length along the track: shadowing and threshold effects. These

must be corrected before a correction in the cell attenuation can be applied. Shadowing

is an effect which is caused by the top of the detector shielding the bottom of the

detector. Since cosmic ray muons primarily originate from the top of the detector, the

hits toward the top of the detector are farther away from the end of the track.

The next effect which needs to be corrected is the threshold effect. For a cell to

be considered a hit, the ADC pulse must be above a certain height. An estimation of

the number of photo-electrons is made by multiplying the ADC by a scale factor. The

number of photo-electrons (PE) produced from a hit follows a Poisson Distribution.
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Figure 5.2: A tri-cell used for calibration. The dark red cell is the cell used for calibra-
tion. The path length is

Ly
cy

.
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Figure 5.3: dE
dx as a function of distance from the track end. Hits farthest away from

the track end have a very non-uniform dE
dx shape.
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Therefore, short minimum ionizing hits are highly affected because only the upward

fluctuations will produce enough photo-electrons above threshold. This is most com-

monly seen in the horizontal cells for cosmic ray muons because the steep angle of

descent into the detector causes more of the energy deposition to occur in the vertical

cells. Horizontal cells with a small W are even more greatly affected.

Figure 5.4: Correction factors used for relative attenuation correction in both detectors.

5.1.2 Attenuation Correction

Since the fibers used in the cells are wavelength shifting, the light which is captured

is attenuated as it travels to the electronics. Therefore, hits that occur farther away

from the electronics will on average a lower PE, and thus be more greatly affected by

threshold effects. It is for this reason that a correction needs to be applied to the

estimated PE. In order to do this, a two dimensional histogram of the PE over path

length is plotted versus W for every channel in the detector. This histogram is then fit

to the equation of the form:

y(W ) = C +A

(
exp
(W
l

)
+ exp

(
− W + L

l

))
(5.1)

In the above equation, C and A are free variables, L is the length of the cell, W is the

median value in each W bin, and l is the attenuation length of the fiber. Due to a

phenomenon called ”roll-off” which is when light is absorbed in the black plastic at the

cell ends, instead of the fiber. This light deficit is well modeled with an fourth order
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polynomial, so the following equation is multiplied by equation 5.1.

y =

1− αR(W −WR)4 W > WR

1− αL(W −WL)4 W < −WL

(5.2)

Due to variations in fiber performances, there are usually large residuals from the

exponential form. In these circumstances, an interpolation algorithm called Locally

Weighted Scatterplot Smoothing (LOWESS) is applied to smooth the cell response [26].

The result of the fit gives a prediction for the PE independent of the distance away

from the readout which is proportional to the deposited energy in the cell.

5.1.3 Absolute Energy Calibration

Once the correction for the PE has been applied, it becomes necessary to multiply

it by a scale factor to obtain a measurement for the deposited energy in the cell. To do

this, cosmic ray muons which stop inside of the detector are used because the distance

away from the muon end is well known. Cell hits which happen between 100 and 200

cm from the track end are used because they fall in the Bethe-Bloch flat region as seen

in figure 5.6.

Using monte-carlo simulation for muons, the desired scale factor is found by taking

the ratio of the true dE
dx and the PECorr

cm . With this scale factor, PECorr from data can

be converted into cell energy deposition.

5.2 Hit Clustering with Slicer

The first step in reconstructing the physics of the measured event is to cluster the

cell hits in space and time. NOνA uses an algorithm called Slicer attempts to cluster

all of the hits which were involved in a particular physics event. The Slicer Algorithm

uses the Density-Based Spatial Clustering of Application with Noise (DBSCAN) Algo-

rithm. DBSCAN performs clustering by finding cores, data points with the number of

neighboring points greater than a pre-defined minimum and within a certain tolerance

of distance in a parameter space. Once the cores are identified, DBSCAN finds weak

neighbors, data points within the distance tolerance of a core without neighbors. Data
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Figure 5.5: ND (top) and FD (bottom) fit for PE over path length versus W. The blue
curve represents the fit after the LOWESS algorithm was applied. Notice how the curve
better fits the data near the ends.
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Figure 5.6: Cell response per unit length versus distance from track end. Curve between
lines is approximately constant and is called flat region.
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points which are neither cores or weak neighbors are not clustered and considered noise.

If a cluster does not contain a minimum number of hits, defined by the user, the hits in

the cluster are also considered noise [27].

Figure 5.7: Cell response per unit length versus distance from track end. Curve between
lines is approximately constant and is called flat region. https://commons.wikimedia.
org/w/index.php?title=File:DBSCAN-Illustration.svg&oldid=219879325

In NOνA, the data points clustered by DBSCAN are cell hits, and the separation

metric between two hits in the same view is given by the following equation:

L =

(
∆T −∆~r/c

Tres

)2

+

(
∆Z

α

)2

+

(
∆XorY

α

)2

+

(
β

PE

)5

(5.3)

Here, Tres is the timing resolution of the hits added in quadrature, ∆~r is the vector

distance between the two points in their view, ∆X,Y, Z are the distances between

the two points for the respective component, α and β are free parameters which are
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separately tuned for each detector, due to the vastly different event rates. PE in this

equation is the sum of squares of the two hits in question. Since the electronic noise

falls off as PE−2.5, the PE term is raised to the fifth power. This term has the role is

to suppress noise hits.

The measures of performance of the slicer are quantities called efficiency and purity.

Efficiency is the amount of an interaction’s energy is reconstructed in the slice. Purity

is the fraction of the slice’s energy which is deposited by the particles of the interaction.

The parameters of slicer are tuned to maximize the efficiency and purity [28] [29].

5.3 The Hough Transform

Once all of the hits in the interaction are clustered, it may be possible to reconstruct

the physics of the neutrino iteraction. The first step in doing this is to identify physically

significant lines in the slice. In order to do this, a Hough Transform is applied [30].

The Hough Transform is an effective computer vision algorithm which identifies lines,

shapes, and curves. For the purposeses of reconstructing particle trajectories, the Hough

Transform aims to identify physically significant lines. The algorithm works by iterating

through all possible pairs of points in each view of the slice and fitting a line through

them. The lines are parameterized by polar coordinates to effectively handle vertical

lines. Since a particular slice has an order of 100 hits, the number of potential lines is

large. In order to efficiently handle all of the lines, a gaussian smear voting scheme is

applied to remove lines which poorly fit the data. The gaussian smear voting score is

defined as follows:

vote = e
− (ρ−ρ0)2

2σ2
ρ e

− (θ−θ0)2

2σ2
θ

σρ =
3√
12

σθ =
3

d
√

6

(5.4)

Where d is the distance between the two points, and σ is the width of the standard

top-hat distribution. When plotted in the Hough Space, pairs of hits which form a

well fitting line produce peaks in Hough Space. Peaks which fall below the threshold

value of the average bin height in Hough Space are removed. The parameteres of the
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most prominent peak are weighted by the vote and averaged. The cells from such lines

are then removed, so the process can be repeated. This iterative process prevents the

leading lines from interfering with subleading ones. This process is repeated until all

lines above threshold are formed [30].

5.4 The Elastic Arms Vertexing

In order to reconstruct a neutrino interaction, the origin of the interaction must

be located. It is from this interaction location where the outgoing particle trajectories

originate. In order to do this, NOνA employs the Elastic Arms Vertexing Algorithm,

also known as the ”Method of Deformable Templates.” Elastic arms considers the lines

in the given picture and calculates a prediction for where they converge. In NOνA,

the Hough lines are used as an initial guess, and the lines are tuned to yield the best

possible event vertex prediction. With a vertex identified, the tuned Hough lines from

the event are taken as ”arms”, which are vectors pointing away from the vertex.

5.5 The Fuzzy-K Vertex Algorithm

The elastic arms algorithm is a highly performing algorithm for finding the physical

lines in a particular slice, but it under performs with clustering cell hits belonging to

such lines. This issue is mitigated by supplementing the work done by elastic arms with

Fuzzy-k Means Clustering Algorithm. Fuzzy-k means clustering is a variant of the well

known K-means Clustering algorithm which is an unsupervised learning technique with

the objective of finding the membership of a particular data point to a collection of

data points in a particular space. Using Fuzzy-k clustering with elastic arms vertexing,

NOνA is able to reconstruct the particle trajectories of a particular physics event.

The original k means clustering algorithm has the objective of placing n data points

into k sets, where k ≤ n, to minimize the sum of squares distance of each point to a

cluster centroid. This objective is formulated as follows:

arg min
S

k∑
i=1

∑
x∈Si

‖x− µi‖2 (5.5)
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In this algorithm, a predefined number of centroids is placed randomly in the space,

and their coordinates are shifted in order to minimize the objective function. One of

the shortcomings of k-means clustering for NOνA reconstruction purposes is handling

datapoints which can appropriately have membership in multiple clusters. This is a

common occurrence in particle trajectories with large energy contamination from other

particles. NOνA handles this shortcoming by applying this algorithm with soft clus-

tering, also known as fuzzy clustering. Fuzzy-k means clustering is nearly identical to

k-means clustering, but the objective function is modified as follows:

arg min
S

n∑
i=1

c∑
j=1

‖x− µi‖2 (5.6)

Therefore, hits are allowed to have membership in multiple clusters. A useful extension

of this algorithm is to use a probabilistic approach to cluster membership along with

another extension which allows for an unknown number of clusters to be found [31][32].

By doing this, hits which have a probability under a particular threshold will be excluded

from the clusters. This is especially useful for NOνA because noise hits far away from

the particle trajectories are not clustered.

NOνA uses the hits from the XZ and YZ views of the detector for 2D clustering.

The reconstructed vertex from the elastic arms algorithm is determined to be the origin,

and the angular separation from the Z axis is used as the separation criteria. Therefore,

the problem becomes two 1D problems.

5.6 Hit Reclustering

Though the Fuzzy-k clustering algorithm performs reasonably well for reconstruct-

ing particle trajectories, there is room for improvement for reconstructing electron tra-

jectories. The reason for this is that Fuzzy-k was not exploited to handle the conical

shape of the electrons during Bremmstralung Radiation. On average, electrons are

minimum ionizing for the first 8 planes, so there is little reclustering need. However,

electrons begin to radiate after an average of 8 planes. Therefore, cell hits which fall

within 20 cells transverse to the propagation axis are reclustered.
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Figure 5.8: The Bremstrahlung Radiation of electrons leads to cell hits which fall out-
side of the Fuzzy-K clustered prong. Creating a reclutering region increases electron
reconstruction efficiency with marginal purity cost.

5.7 Cell Energy Deconvolution

In neutrino interactions, there are instances in which daughter particle trajectories

overlap in one or both of the views. Since Fuzzy-k clustering allows for membership

of hits in multiple prongs, there exists cells in which several particles have deposited

energy. As a result of this, a deconvolution algorithm is applied to the hits in overlapping

showers, which predicts the percentage of a particular cell’s energy corresponding to one

of the showers in the overlap. The equation is given as follows:

Eicell =
PEcell

ai

(PEshoweri Pi/ai)∑ncells
j=1 PEshowerj Pj/aj

(5.7)

Where PE is the number of photo-electrons, Pi is an exponentially decaying function

with respect to the distance of the iith cell to the shower core, and ai is an attenuation

factor to convert PE into E [33].

52



Chapter 6

Machine Learning Techniques for

Particle Classification

In particle classification, there are many variables which can be exploited. Elemen-

tary classification techniques such as constant cuts and logistic regression struggle as

the number of training variables increases. Not only that, but these algorithms also

struggle when there exist nonlinear correlations between the variables. It is for this

reason that the use of machine learning techniques has grown in scientific experiments

for classification analyses. Several of the algorithms and their applications in the NOνA

will be discussed in this chapter.

6.1 Artificial Neural Networks

One of the most common learning algorithms used in machine learning is the arti-

ficial neural network (ANN). ANN’s were inspired by the structure of the brain and its

configuration of neurons. The most common type of ANN is the feed-forward multi-layer

percepetron (MLP).

In a MLP, all of the neurons in a particular layer connect to all of the neurons in the

following layer. Each neuron in a particular layer contains an activation function which

performs a nonlinear calculation. The combination of all of these activations allow for

the modeling of nontrivial data trends. For binary classification tasks, the output of the
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Figure 6.1: MLPs model nonlinear behavior by passing inputs through several layers of
neurons with simple nonlinear activations.
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ANN is the sigmoid function, given by:

σ(x) =
1

1 + e−x
(6.1)

This is an ideal final output because the domain spans the entire real line, and the

range is between 0 and 1. Therefore, the output of the model give the probability of

an unknown state to be binary type 1. ANN’s are trained in an iterative manner by

performing a gradient descent on a particular cost function. For classification tasks, the

binary cross-entropy function is the cost function to be minimized. It is given by:

J(h) = − 1

m

m∑
i

(
yiln(hi) + (1− yi)ln(1− hi)

)
(6.2)

where m is the number of samples, h is the predicted value, and y is the ground truth

value. The cross-entropy function is ideal for classification because the range spans the

positive real line, and the domain spans 0 to 1. As a result of this, sufficiently large

gradients exist near the region of interest for classification.

In gradient descent, the parameters of the model are tuned to yield a globally min-

imal cost function. Since, the gradient vector points in the direction of greatest rate of

change, a step along the gradient vector is taken given as follows:

J := J − α∂θJ (6.3)

where α is the learning rate, and ∂θ is the gradient with respect to the parameter θ.

This computation requires knowledge about the gradient of the prediction as a function

of the parameters. This is calculated by means of back propagation. Back propagation

is a numerical method of approximating the derivative of the prediction with respect

to the parameters. As its name implies, back propagation feeds the difference of the

prediction and the ground truth into the network in reverse order. This process leads

to a shifting of the parameters which minimizes said difference.
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6.2 Recurrent Neural Networks

There are many applications not well suited for MLPs. One important example is

when the number of inputs are unknown. In order to effectively model such a scenario,

the learning algorithm needs to be able to adapt to the varying number of inputs.

Recurrent Neural Networks (RNN) are well suited to handle this scenario. RNNs handle

these sequences of data by having a constant feedforward architecture with weights

varying by the position in the sequence. Not only that, RNN modules have information

from previous models, and in some applications, later modules, fed in, This can be seen

in Figure 6.2.

Figure 6.2: RNNs can be viewed as temporally connected feed forward networks.

RNNs are concatenated sequentially separated ANNs. By using temporally sepa-

rated parameters, RNNs learn dynamic feature correlation. It is important to note that

time is a term used loosely. In the context of RNNs, time is the domain on which the

model samples sequentially.

6.2.1 Long Short-Term Memory Networks

Classical RNNs are highly performing models for sequential modeling tasks. How-

ever, when the sequences are long, traditional RNNs experience the issue of vanishing

gradients. This is the phenomenon in which small gradient values decrease in magnitude

after passing through each layer in back propagation. The Long Short-Term Memory

Network (LSTM) is a recurrent architecture which mitigates this issue.

LSTMs employ two new neurons in each module with the task of prioritizing how

important it is to remember or forget a particular sample of the sequence. These neurons
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Figure 6.3: Single cell LSTM architecture
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are known as the ”remember” and ”forget” gates, and they are trained along with all

of the model’s other parameters by means of back propagation [34][35]. By employing

this method, LSTMs give higher priority to the instances of a sequence in which there

is large potential for learning. This is the machine learning architecture which was used

to train the νeCC classifier in this analysis.

6.3 Decision Trees

One of the most popular machine learning models in science is the decision tree

model. Decision tree classifiers and regressors both function by considering discriminat-

ing performance of a feature at a particular node and forming more decision branches

from such node. Conditions which yield the highest separation power are used as the

selection criteria at the nodes. This is illustrated very well in Figure 6.4.

6.3.1 Boosted Decision Trees

Quite often, it is found that standard decision trees are not robust against statistical

fluctuations in the training dataset. As the tree depth increases, so does the risk of

overfitting to said fluctuations. Simply using shallower trees is not a viable solution, for

the discrimination power of a decision tree scales with the depth. An alternative solution

is to use an ensemble of shallow trees. There are two common implementations of this:

boosting and bagging. It was found that using adaptive boosted decision trees yielded

the highest separation significance for identifying signal νeCC events over background.

Adaptive boosting is the procedure in which a shallow tree is trained on the training

dataset. Since shallow trees are weak learners, the single tree models the data for

a fraction of the parameter space. The adaptive boosting procedure then randomly

selects several samples which fail the selection of the first tree and use them to train the

second tree. This procedure happens until the entire parameter space is modeled. In

its use, a boosted decision tree (BDT) uses a probability weighted superposition of the

elements of the tree ensemble to model the event in question [37]. The implementation

of BDTs in this analysis will be explained later in this thesis.
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Figure 6.4: Decision trees define selection criteria for particular features at each node
and produce more decision branches from the given node. Here, x represents a dis-
criminating variable, S represents signal events, and B represents background events
[36]
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Figure 6.5: The BDT ensemble is formed by successively training weak learners on the
events which fail selection by the previous learner.
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Chapter 7

νe CC Identification Models

The NOνA reconstruction chain provides useful estimations of the kinematics and

topologies of a particular physics event. Features extracted from the reconstructed in-

formation can be exploited to discriminate between the signal and background events.

The primary νeCC identifier in NOνA neglects this information, and instead, uses the

low level information from the cell hits. By using higher level features from reconstruc-

tion, it will be shown that a shallower model is capable of achieving similar results with

far less training time and data. This classification algorithm goes by the uninspired

name ”SliceLID”, and it capitalizes on the power of the LSTM architecture. In ad-

dition to the development of SliceLID, an empirical cutting scheme in a multivariate

particle identification (PID) space will be explained.

7.1 Shower Based Classification

SliceLID is a composite model in which shower level features are fed into a shallow

LSTM, and the output of the LSTM is concatenated with the calorimetric energy of

the slice. Finally, the information is passed on to the output layer which consists of a

single neuron with a sigmoid activation. Features which best describe the kinematics

and topology of a particle in a reconstructed shower were chosen to maximally exploit

the intra-slice, energy dependent, nonlinear correlations.

61



7.1.1 Log Likelihood Based Identification

One of the ways to distinguish particles in detectors is to observe the energy de-

posited per unit length (dEdx ). Due to mass differences of charged particles traversing

the detector, the behavior of dE
dx of the particles differ. This behavior is well simulated

in the GEANT4 simulation framework. As a result of this and the large number of

simulated neutrino interactions, meaningful information about the particle trajectories

can be made. The reconstruction information from the simulations were used to model

the energy deposition behavior for electrons, muons, protons, charged pions, neutral

pions, and photons in both longitudinal and transverse directions. Histograms of dE
dx

were made for each particle hypothesis and binned by total calorimetric energy and po-

sition along the reconstructed prong. To form probability distribution functions, these

histograms were area normalized.

Figure 7.1: The mass differences between different charged particles leads to unique
longitudinal and transverse dE

dx behavior along the axis of propagation.

These distributions give the likelihood of an unknown particle being a hypothesis

particle at a particular location along its propagation. It is possible to take the product

of all of the likelihoods is taken over all of the planes to find the net likelihood of being

a particle type. Doing this, however, does not yield much information since the true

particle hypothesis tends toward 1, and all other hypotheses lie near 0. Therefore,

the logarithm of the likelihood is taken at each plane and summed to yield a net log

likelihood of being a hypothesis particle. Working on the logarithmic scale allows for

much greater distinguishing power of the particle hypotheses. The differences of the log
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likelihoods for the electron hypothesis and all other hypotheses are used as inputs into

the learning algorithm.

Figure 7.2: Differences in the log likelihood shapes for different charged particles pro-
vides strong discriminating power.

7.1.2 LID

The original NOνA νeCC identifier used log likelihood based νeCC based iden-

tification (LID). LID considered the log likelihood differences for the leading energy

reconstructed shower. In addition to these log likelihoods, LID used slice level informa-

tion to model the topology of the reconstructed neutrino interaction. These variables

include the average dE
dx of the leading shower, the reconstructed π0 mass from the two

leading energy prongs, the energy clustered in the vicinity of the vertex, and the angle

of the leading prong with respect to the beam axis. LID was a high performing model
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for events with a low hadronic energy fraction, but its performance degraded when the

hadronic energy fraction increased. In order to yield a gain in selection performance, it

is necessary to consider information from the subleading prongs.

7.1.3 SliceLID

LID laid the groundwork for physics based νeCC identification. There is still much

information to be gained from considering the hadronic activity of the interaction. This

was achieved by employing a model which could handle a variable number of prongs in

a robust manner. The LSTM was chosen to satisfy this requirement, and the additional

physical features were reconsidered for more effective signal selection. This model was

given the uninspired name SliceLID, and it is the selector used for this analysis.

7.1.4 SliceLID Architecture

After it was decided that a RNN would be used to handle the variable number of

prongs for each event, the next task was to choose an optimal recurrent architecture.

The LSTM was chosen to mitigate the effects of the vanishing gradient problem. Though

the number of prongs for a particular neutrino interaction are small, there are many

parameters in the models for each prong. Therefore, the problem of vanishing gradients

was still a problem to handle.

In the SliceLID scheme, each reconstructed prong is used as an input for a particular

model time step. A limit of 7 prongs was applied to eliminate obvious backgrounds. The

inputs for each prong is as follows: longitudinal and transverse log likelihood differences

of each particle listed and the electron hypothesis, the outputs of the convolutional

neural network particle identifier for each particle hypothesis, the calorimetric energy

of the prong, the length of the prong, the energy asymmetry between views for each

prong, and the cosine angle of the prong with respect to the z axis. In addition to these

inputs for each prong, the slice energy is used as an input. The vector of each prong,

sorted by energy, was fed into the LSTM for each time step, and each were given a layer

of 16 neurons with the ReLU activation. These time separated models were connected,

and the output of the final model was the traditional sigmoid output.
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Figure 7.3: The SliceLID architecture feeds the shower level information into an LSTM,
and the output of the LSTM is concatenated with the slice calorimetric energy. This
concatenated vector is fed into a single neuron with a sigmoid activation.
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7.1.5 SliceLID Preselection

There are many background events in the training files which are easy to distinguish

from the signal. It has been shown that a machine learning model’s classification per-

formance is sub-optimal when the training dataset is saturated with easy background.

For this reason, a series of loose preselection cuts were made to eliminate the obvious

background and retain nearly all of the signal. The cuts were as follows:

• Slice calorimetric energy < 6 GeV

• 40 < # Hits in the slice < 160

• Longest prong in the slice < 700 cm

With the simple background gone, the machine learning model was able to place larger

effort on the difficult to distinguish cases.

7.1.6 SliceLID Training

The shallow architecture of SliceLID was chosen in order to optimize selection per-

formance and training time. It was found that deeper architectures yielded marginal

gain with significant increase in training time. With such a small architecture, the model

was trained with a MacBook Air. The duration of model training on a simple cpu was

on the order of hours. This is drastically shorter and less resource intensive than the

training requirements for a deep convolutional neural network, like the one being used by

the collaboration. In order to mot effectively utilize the computing resources, the model

was trained categorically by the fraction of the leading prong calorimetric energy and

the slice calorimetric energy. A requirement on the model validation loss improvement

was imposed for each epoch, so separating the model allows for abbreviated training

for the kinematic regions with more discriminating power. Plots for the final training

epochs of the FHC models are as follows:

7.2 Event Based Classification

SliceLID is a powerful particle classification tool with a high accuracy. Accuracy,

however, is not the performance metric needed for this analysis. Instead, the figure of
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Figure 7.4: Cost function for SliceLID with energy fraction < 0.25
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Figure 7.5: Cost function for SliceLID with 0.25 < energy fraction < 0.5
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Figure 7.6: Cost function for SliceLID with 0.5 < energy fraction < 0.75
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Figure 7.7: Cost function for SliceLID with energy fraction > 0.75

70



merit (FOM) is the optimization objective for the classification. FOM is a measure of

statistical significance of separation, and it will be discussed in more detail in the next

chapter. In order to have the ability to optimize for FOM, two additional classifiers are

trained and used in combination with SliceLID. The two additional classifiers are BDTs

with slice level inputs:

• SliceLID Score

• Reconstructed νe energy

• Reconstructed Hadronic energy

• Longest prong length

• Number of hits

• Cosine angle between the leading shower and the beam axis

• Ratio of transverse Momentum to total momentum

• x and y components of the momentum

• Hit sparseness asymmetry between the two views

• Coordinates of the reconstructed vertex

• Shortest distance to the top of the detector

• Shortest distance to an edge of the detector which is not the top

The first BDT serves as a tool for distinguishing between the νe CC signal and beam

backgrounds. Whereas, the other BDT has the purpose of separating the signal from

cosmic background. Most of the features of these two BDTs were chosen simply because

many of them are used as rectangular preselection cuts in the official νe analysis. The

use of BDTs over rectangular cuts has many advantages. Some of them include [36]

• Efficiently handle many input features

• Carve away high purity regions of the feature space
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• Effectively handles weakly discriminating variables

• Robust against non-trivial correlations between input variables

• No data preparation needed before training

• Handle two BDT scores, instead of individually handling the input features

It is for this reason two BDTs were chosen over the rectangular cut method.
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Chapter 8

Event Selection

Throughout the entire data collection in NOνA, there will be an incredible num-

ber of background events for every signal event in the far detector. Processing this

many terabytes of data in a timely manner is not feasible. Not only that, but poorly

reconstructed events can greatly degrade selection and energy estimation performance.

To NOνA’s benefit, many of these events are simple to identify and reject with little

computational cost. The following cut scheme was applied to remove these background

events: cosmic veto, data quality cuts, and a series of empirical cuts in a multidi-

mensional strong discriminator space to maximize the figure of merit (FOM) for signal

identification over background. In this chapter, each of the elements of the cutting chain

will be discussed in further detail.

8.1 Quality Cuts

In order to ensure that the data being analyzed is of considerable quality for the

analysis, several data quality cuts are applied before applying any analysis specific cuts.

These include constraints on: number of active di-blocks, live time, hit rate, tracking

fraction, slice number, and time stamp. Explanations for the cuts are as follows:

• Number of active di-blocks ≥ 4: Ensure the fiducial volume for the particular run

is large enough to obtain large enough event rate and neutrino energy efficiency

• Live time: Live time must be large enough to allow for stable data taking for a
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required continuous duration

• Hit rate: Ensures the data taking and noise levels fall within their expected values

for the particular trigger

• Tracking fraction: Large number of 3D tracks gives verification of the stability of

the time synchronization of the DCMs

• Slicing: large number of slices show sufficient readouts and stable timing resolu-

tion.

• Time stamp: Selects hits which fall in the beam spill trigger window

Figure 8.1: Events which failed the data quality selection have color given in the legend.
The red arrows point in the direction of cut failure.

8.1.1 Cosmic Veto

The FD is located on the surface of the earth, which means that there is a large

cosmic ray muon rate in the detector. Many of these are easy to reject, due to their
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topology. Therefore, a cosmic veto is applied to remove the obvious cosmic ray muon

tracks: tracks which propagate perpendicular to the FD z-axis and tracks which com-

pletely pass through the detector.

8.1.2 Event Quality

When a charged particle deposits a lot of energy into a particular channel, there is an

occasional effect in which a channel in the APD saturates and contaminates neighboring

channels. This leads to a plane with several contiguous cell hits. This phenomenon can

greatly hinder the reconstruction quality of the event. Therefore, any slice with a plane

which has 8 or more contiguous cell hits is rejected.

8.1.3 Official νe CC Signal Selection

In the standard νe analysis, there exists rectangular preselection cuts in parameter space

and a deep learning νe CC classifier cut. The rectangular cuts serve as a preselection

and cosmic rejection to the main particle identifier (PID) known as the Convolutional

Visual Network (CVN). The cutting scheme can be seen in the following figure and table

[38]:

Cut νe CC ν̄e beam νe NC νµ CC ντ CC Cosmics

No Cuts 55.44 1.11 15.87 424.95 242.50 2.98 3.26 × 106

Veto 54.3 1.09 15.37 323.74 226.54 2.86 3.26 × 106

Analysis Mask 54.3 1.09 15.37 323.74 226.54 2.86 3.26 × 106

Event Quality 53.50 1.08 15.12 304.79 222.14 2.79 2.88 × 106

Containment 40.92 0.83 10.17 235.78 106.55 1.75 94172

Backward Photon 40.59 0.83 10.09 230.85 103.52 1.73 90340.2

pT /p 40.02 0.82 9.98 215.97 101.49 1.69 71734.5

Preselection 38.28 0.71 7.47 108.43 43.75 1.07 15734.7

CVN 31.09 0.58 5.74 5.08 0.93 0.31 2.34

Nearest Slice 30.98 0.58 5.74 5.05 0.92 0.31 2.02

Table 8.1: Official νe Analysis Selection Flow
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Figure 8.2: Survival Numbers for a given νe Cut

76



A direct comparison was made between CVN and SliceLID with the official prese-

lection/cosmic rejection criteria. Since SliceLID had not been trained with cosmic ray

data, its cosmic background rejection is weak. Therefore, cosmic ray background was

ignored for the comparison. The results are as follows:

PID Signal Background FOM

CVN 28.92 11.98 4.52

SliceLID 27.89 11.79 4.43

Table 8.2: SliceLID/CVN Comparison with Official Preselection

As seen from the table, with the standard νe CC preselection and cosmic rejection

cuts, SliceLID’s separation power falls just short of CVN’s. It is important to note, that

the cutting scheme used by the official analysis was tuned to optimize for CVN. It is

for this reason that a new cut scheme is performed for this analysis.

8.2 Particle Identification Selection

Once all of the easy backgrounds and reconstruction failures have been removed,

the more cumbersome task of selecting oscillated νe signal from the various backgrounds

comes. The event rates for signal and the various backgrounds differ, and it is the goal

of this analysis to achieve the highest sensitivity as possible for oscillation parameter

measurement. Therefore, the statistical significance of Poisson distributed signal over

background is chosen as the optimization objective, also known as the figure of merit

(FOM):

FOM =
Sig√

Sig +Bkg
(8.1)

It is for this reason that machine learning algorithms are trained and used as particle

identifiers (PID). The implementation of signal selection with said algorithms will be

explained in this section.
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8.2.1 The SliceLID νe CC Identifier

SliceLID is chosen as one of the PIDs to be used because of its ability to use the

outputs of reconstruction chain and perform high accuracy signal classification. There

exists high discriminating power in the shower level information, and it’s amplified with

the addition of the slice energy. On its own, however, SliceLID is not optimal for

classification because it was optimized to minimize the cross-entropy loss of a training

set which had not been oscillated or POT normalized. Therefore, additional PIDs are

used to enhance selection sensitivity.

8.2.2 Selection BDTs

As mentioned in the previous section, the standard νe appearance analysis cuts

were chosen to yield the highest possible CVN performance. This analysis, however,

uses many of the same features for preselection and cosmic rejection, but instead of em-

ploying rectangular cuts, the discriminating power of BDTs is used. As a result of this,

there are only three independent parameters for performing the selection: the SliceLID

score, the preselection BDT score, and the cosmic rejection BDT score. The optimal

values for these are found by performing rectangular cuts in this lower dimensional PID

space. Rectangular cuts are appropriate to use here because the features are low di-

mensional, have low intra-correlation, and are highly discriminating. After performing

this procedure, the following selection cuts were determined:

• SliceLID > 0.73

• Beam BDT > 0.52

• Cosmic Rejection BDT > 0.56

For ease of viewing, the PID plots are shown in 2D instead of 3D to demonstrate

the discriminating power and low intra-correlation.

Table 8.3 shows the content of the data through the selection process:

Using equation 8.1, the ratio of the FOM from the official analysis to the FOM from

this analysis is 0.998.
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Figure 8.3: Preselection BDT/SliceLID Colormap

Cut νe CC beam νe NC νµ CC ντ CC Cosmics

Quality Cuts 41.25 12.82 20.75 95.23 0.91 6473.51

SliceLID 36.75 9.29 8.80 2.65 0.52 2593.22

Preselection BDT 34.58 6.23 6.15 1.45 0.35 1386.85

Cosmic Rejection BDT 30.00 5.22 4.40 0.84 0.29 2.16

Table 8.3: SliceLID Analysis Selection Flow for 8.85×1020 POT
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Figure 8.4: Cosmic Rejection BDT/SliceLID Colormap
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Figure 8.5: Cosmic Rejection BDT/Preselection BDT Colormap
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8.3 Energy Estimation

A critical component to performing the νe appearance analysis is the accurate pre-

diction of the neutrino energy. The calorimetric energy does not suffice for this task

because of the amount of information being lost from the dead material. Therefore, a

more sophisticated algortihm must be applied to regress the information from the slice

to the true neutrino energy. The reconstructed energy is modeled by separating the

energy of the interaction into an electromagnetic portion and a hadronic portion. The

electromagnetic energy is found by summing the calorimetric energy of each cell hit in

the prongs which pass the selection criteria of NOνA’s electromagnetic particle identifi-

cation algorithm. The hadronic energy is the calorimetric energy of every cell hit in the

slice which does not belong to any of the electromagnetic prongs. A quadratic function

of electromagnetic and hadronic energies is fit to give the final energy estimation [38].

Figure 8.6: Energy Resolutions for this analysis and the standard νe preselection/cosmic
rejection with optimal CVN cut
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Chapter 9

Analysis

The main objective of NOνA is to quantify the sign of ∆m2
32, θ23, and δCP . In order to

accomplish this task, this analysis performs a joint fit, using the results of the 2018 FHC

νµ disappearance result and the results of the multidimensional PID selection procedure

with the 2018 FHC NuMI data. In order to obtain such a result, there must exist an

unbiased prediction of the signal spectrum at the FD. With this prediction and the

FD NuMI data, a maximum likelihood fit is made with both statistical and systematic

uncertainties.

9.1 Predicting the FD Data

It is impossible for pure monte-carlo simulation to make high accuracy predictions

on its own. There are too many experimentally unique phenomena to model, so fitting

to data can greatly improve the simulation’s predictive power. It is for this reason that

NOνA uses the ND. The ND simulation is tuned to the ND data, so that simulation at

the FD can be much more representative of the FD data. Creating a prediction at the

FD requires several steps. The NuMI spectra as well as the background spectra must

be corrected and then extrapolated to the FD. After this, FD specific backgrounds to

the analysis such as neutrino interactions in the rock and cosmic rays must also be

understood.
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9.1.1 ND Decomposition

Due to its proximity to the NuMI Beam source, the ND contains a rich sample of many

interactions. With these high statistics datasets and simulated samples, the relationship

between truth quantities from the simulation and the reconstructed information is better

understood.

The first decomposition is νµ CC decomposition. This technique selects events which

pass the νµ CC selection requirements and compares the true energy from the simulation

to the reconstructed energy from the data. Since the ND and FD are functionally

identical, this information will be crucial for estimating the true energy of the signal

from its reconstructed energy at the FD.

The next decomposition technique to be considered is called proportional decom-

position. Proportional decomposition assumes that the beam content of the simulation

and data are the same, so only the ratios of the spectra are used for the extrapolation

procedure. Since the content of the FHC tuned NuMI beam is well understood, this

decomposition technique is not used for this analysis.

The final decomposition procedure to be considered is the combination of Michel

decomposition and beam electron neutrino (BEN) decomposition. Michel decomposition

functions by selecting π± in the νµ CC sample. This selection procedure identifies the

charged pions by the Michel electrons from the following decay:

π+ → e+ + νe

π− → e− + ν̄e
(9.1)

By understanding the number of π± in the νµ ND sample, a better understanding of

the NC contribution to the total background. BEN decomposition functions by selecting

νµ CC events in the ND and recording the parents. The number of Kaon parents is an

important quantity because the large Kaon mass offers a much greater phase space for

the νe daughters. Therefore, BEN decomposition gives a greater handle on the number

of intrinsic beam νe events.
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Figure 9.1: Comparison of the number of selected Michel electrons from the data and
the corrected MC
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Figure 9.2: Beam νe sources at the FD
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Figure 9.3: Steps implemented to for signal extrapolation at the FD

9.1.2 Near to Far Extrapolation

By now, the ND sample has been decomposed into its respective components. With

this, a series of steps are made to relate FD reconstructed information to truth level

information for each component. First, a matrix is formed which relates the truth

information and reconstructed information in the ND. Next, a far/near ratio is applied to

incorporate the flux change from having the FD 810 km away. Then simple oscillations

are applied which make no assumptions about the oscillation parameters to be measured.

Finally, the reconstructed data is transformed by the extrapolated matrix to yield truth

level spectra. All of these steps can be seen in figure 9.1.2.

9.2 Treatment of Systematic Uncertainty

Uncertainties in the modeling of experimental operations lead to a decrease in sen-

sitivity of the measurement of the oscillation parameters in question. This is because

the systematic uncertainties add in quadrature to the statistical uncertainty. Therefore,

in the large statistics limit, the measurement uncertainty is dominated by systematic

uncertainty. It is of vital importance that the systematic uncertainties of any analysis

be quantified, so that the parameter fit values can be given at a known confidence inter-

val. NOνA has the advantage of having functionally identical near and far detectors, so
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many of the detector specific systematic uncertainties are either significantly reduced or

completely eliminated. Nevertheless, there still exist sources of systematic uncertainty

which cannot be neglected. They are broken up into the following categories:

• Calibration

• Light levels

• Cherenkov light

• Beam transport

• Hadron production

• Neutrino interaction modeling

• Extrapolation

• Normalization

Ordinarily, there is a category for the modeling of neutrino interactions in the

detectors’ surroundings. However, this category will not be discussed because it is

not incorporated into this analysis. The systematic uncertainties in this analysis

are quantified by shifting the nominal sample positively and negatively by the

quantity’s quoted valued, and the uncertainty is propagated to the oscillation fit.

9.2.1 Calibration

One of the greatest sources of systematic uncertainty for the νe appearance analysis

is calibration uncertainty. Though the ND and FD are functionally identical, they are

calibrated differently. As mentioned in chapter 5, both detectors are calibrated with

cosmic ray muons. Since the FD is located on the surface of the earth, it is exposed to

a large statistics sample of cosmic rays, whereas the ND has a much lower cosmic ray

interaction rate. In addition to this, since the ND is 100 meters underground, many

of the cosmic ray muons range out of the minimum ionizing region of the Bethe-Bloch

curve and cause a higher fraction of Bremsstrahlung Radiation.

In order to handle these uncertainties, deliberate miscalibrations are applied to the

nominal simulated sample. These include a 5% shift to the absolute energy calibration
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scale, changes to the response slope shape, and random shifts in the MC. The effect

of these shifts are determined by comparing the event rate difference to the nominal

sample.

9.2.2 Light Levels and Cherenkov Light

The equation for the amount of light yielded in the scintillator is given in equation

4.2. It was discussed in chapter 4 that the scintillator saturates when a charged particle

has a large dE
dx . This phenomenon is modeled by adding the Birks and Chou terms to

the light yield equation. The systematic uncertainty of this is evaluated by shifting the

thresholds for saturation and shifting the light level amount by 10% while compensating

for that with a compensating shift to the absolute energy calibration. Further, the light

yield from the Cherenkov model used by NOνA is shifted, yielding a 2.6% decline in

proton response.

9.2.3 Beam Transport and Hadronic Production

Differences in the working conditions of the beam and its simulation is a source

of systematic uncertainty. This is quantified by shifting the locations of working com-

ponents and the beam spot size. Uncertainty in hadronic production is handled by

generating a statistical ensemble of cases in which the hadron production models are

varied within their uncertainties. Each case is propagated through the simulation chain,

and their predicted flux is determined.

9.2.4 Neutrino Interaction Modeling

The neutrino interaction software, GENIE, sets default values for the parameters

of the neutrino interactions. These values can be tuned to better match the data in

a particular experiment. As a result of this, the parameters which are used for the

interaction cross-sections, hadronization, and final state interactions are tuned to best

match the ND data. The uncertainties from this are determined by the quality of the

fit to the data.
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9.2.5 Normalization and Extrapolation

The normalization systematic is simply a way for considering uncertainties in the

exposure, fiducial mass, and ND reconstruction efficiency. The extrapolation system-

atics are the uncertainties which arise from predicting the FD oscillated νe signal from

the νµ CC spectrum at the ND. Not only that, but the differences in the detector sizes

lead to different levels of containment, and thus differences in the reconstructable phase

space.

The effect of the quadrature summed systematic shifts on the selection can be seen

in figures 9.4,9.5.

20− 10− 0 10 20
Signal Uncertainty (%)

Statistical error

Total syst. error

Detector Calibration

Neutrino Cross Sections

Normalization

Near-Far Differences

Muon Energy Scale

Detector Response

Beam Flux

 Beamν NOvA Preliminary

Figure 9.4: Net effect of all the systematics on the total uncertainty of the signal
measurement.
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50− 0 50
Background Uncertainty (%)

Statistical error

Total syst. error

Detector Calibration

Neutrino Cross Sections

Normalization

Beam Flux

Detector Response

Near-Far Differences

Muon Energy Scale

 Beamν NOvA Preliminary

Figure 9.5: Net effect of all the systematics on the total uncertainty of the background
measurement.
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Chapter 10

Results

Now that the prediction objects are made and the FD NuMI data is collected, a fit to

the νe appearance probability(equation 1.30) can be made. The discussion of parameter

fitting in this chapter follows closely the section of maximum likelihood fitting in the

statistics section of the PDG [12]. The oscillation parameters are tuned such that the

maximum likelihood of the fit is found [39]. The data and predictions are binned by the

reconstructed energy with a bin width of 0.25 GeV. Since the binned data is Poisson

distributed, the likelihood function can be written as follows:

L(θ) =

N∏
i=1

µnii (θ)e−µi(θ)

ni!
(10.1)

where N is the number of bins, ni is the number of entries in the ith bin which are

Poisson distributed, θ is the vector of tunable oscillation parameters, and µi(θ) is the

average number of entries per bin. With binned data, one is able to obtain a goodness of

fit statistic and maximum likelihood estimators by maximizing the likelihood function.

Maximizing the likelihood accomplishes the same task as maximizing the likelihood

ratio:

λ(θ) =
L(n;θ)

L(n;µ)
(10.2)

The denominator is the likelihood function with tunable means which have maximum

likelihoods at µ = n. It is more convenient to work with the logarithm of the like-

lihood because the differentiation from optimization handles sums over products, and
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the parameters which maximize the log-likelihood also maximize the likelihood. This

yields:

ln(λ(θ)) =
N∑
i=1

[
ni − µi(θ)− niln

( ni
µi(θ)

)]
(10.3)

Most often, the maximum likelihood function is found numerically. The most common

method being gradient descent. Therefore, a -2 factor is added, which is convergent

with gradient descent.

− 2ln(λ(θ)) = 2
N∑
i=1

[
µi(θ)− ni + niln

( ni
µi(θ)

)]
(10.4)

If µi is sufficiently large, −2ln(λ(θ̂)) is the χ2 distribution for Poisson distributed data.

10.1 Systematic Nuisance Parameters

No experimental operation is perfect. There always exists sources of systematic uncer-

tainty which hinder the performance of fitting. Therefore, additional degrees of freedom

are added to the fit by means of nuisance parameters ν. The addition of nuisance param-

eters decreases systematic uncertainty at the cost of increasing statistical uncertainty.

This is due to the fact that finding maximum likelihood values for all the parameters

leads to correlations between ν and θ. To reduce the effect of overfitting the model to

the nuisance parameters, a penalty term in the form of the variance weighted Frobenius

Norm is added to the log-likelihood ratio giving:

− 2ln(λ(θ,ν)) = 2

N∑
i=1

[
µi(θ,ν)− ni + niln

( ni
µi(θ,ν)

)]
+

M∑
i=1

ν2
i

σ2
i

(10.5)

With this, a map of the ∆χ2 can be made in the parameter space with which confidence

intervals can be obtained.
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10.2 Feldman-Cousins Corrections

In cases where the statistics are not large, such as this one, ∆χ2 alone cannot be

used for creating confidence intervals. Not only that, the parameters being used in the

fit do not span the real number line. Instead, they have physical boundaries. It is for

this reason, that a method for handling small signal statistics with physical boundaries

was created by Feldman-Cousins [40]. This approach is a Frequentist approach in which

many experiments are run with simulation to determine probabilities for fluctuations of

a particular parameter near physical boundaries while fixing all other parameters. Due

to the time and computation cost of the Feldman-Cousins procedure, the corrections

will not be applied to the fitting procedure in this analysis.

10.3 Fitting the Data

After performing the selection procedure over the entire FHC dataset, 54 events in total

were observed, compared to the prediction of 42.8 signal events and 15.3 background

events, resulting in an observation of νe appearance at 5.27σ significance. The spectrum

can be seen in figure 10.3. By using the maximum likelihood fitting procedure previously

discussed with both νe and νµ selected data, the analysis preferred maximal mixing with

the normal mass hierarchy and δCP
π = 1.92+0.08

1.19 .

The contours and uncorrected significance slices for the for the parameter fits can

be seen below.

10.4 Event Displays

In this section, several interesting event displays will be shown. These will show a

glimpse of the similarities and differences of the selection of this analysis and the official

analysis. Plots will be shown for both selected NuMI triggered events and out of time

cosmic events.
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Figure 10.1: Comparison of the FD prediction with the selected NuMI data
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Figure 10.2: Contours showing the uncorrected confidence intervals for ∆m2
32 vs θ23
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Figure 10.3: Contours showing the uncorrected confidence intervals for ∆m2
32 vs θ23

0 0.1 0.2 0.3

13θ22sin
0

0.5

1

1.5

2

π/
C

P
δ

No FC

σ1
σ2

σ3

68%C.L.
Reactor

NOvA Preliminary

NH

0 0.1 0.2 0.3

13θ22sin
0

0.5

1

1.5

2

π/
C

P
δ

No FC

σ1
σ2

σ3

68%C.L.
Reactor

NOvA Preliminary

IH

Figure 10.4: Contours showing the uncorrected confidence intervals for δCP vs θ13
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Figure 10.7: An event which passes all of the selection for this analysis but has a CVN
score ¡ 0.2
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Figure 10.8: An event which fails the selection of this analysis but passes CVN selection

Figure 10.9: An event which passes both SliceLID and CVN selection
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Figure 10.10: An event in the timing sideband which fails the selection of this analysis
but passes CVN selection for its peripheral sample

Figure 10.11: An event which passes both PID selection criteria in the timing sideband
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Chapter 11

Conclusion

In this thesis, it was shown that a physics based recurrent neural network νe CC

identifier achieved selection performance comparable to that of a deep convolutional

neural network νe CC identifier. Using high level physics inputs to the model yielded

smaller systematic uncertainties than the low level cell energy information. In addition

to the recurrent neural network identifier with shower level inputs, preselection and cos-

mic rejection boosted decision trees were trained, and rectangular cuts to the resulting

three dimensional particle identifier space were made to optimize the figure of merit

for parameter measurement. With this selection criteria, 54 events were selected in the

trigger spill window at the FD. 43 signal events with 15 background were predicted.

With the predicted and data spectra of the reconstructed νe CC energy, the best fit of

this analysis was determined to be normal hierarchy, maximal mixing, and δCP = 1.9π

with a yet to be determined statistical significance.
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